Pulse sequence for dynamic volumetric imaging of hyperpolarized metabolic products.

نویسندگان

  • Charles H Cunningham
  • Albert P Chen
  • Michael Lustig
  • Brian A Hargreaves
  • Janine Lupo
  • Duan Xu
  • John Kurhanewicz
  • Ralph E Hurd
  • John M Pauly
  • Sarah J Nelson
  • Daniel B Vigneron
چکیده

Dynamic nuclear polarization and dissolution of a (13)C-labeled substrate enables the dynamic imaging of cellular metabolism. Spectroscopic information is typically acquired, making the acquisition of dynamic volumetric data a challenge. To enable rapid volumetric imaging, a spectral-spatial excitation pulse was designed to excite a single line of the carbon spectrum. With only a single resonance present in the signal, an echo-planar readout trajectory could be used to resolve spatial information, giving full volume coverage of 32 x 32 x 16 voxels every 3.5s. This high frame rate was used to measure the different lactate dynamics in different tissues in a normal rat model and a mouse model of prostate cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiband excitation pulses for hyperpolarized 13C dynamic chemical-shift imaging.

Hyperpolarized 13C offers high signal-to-noise ratios for imaging metabolic activity in vivo, but care must be taken when designing pulse sequences because the magnetization cannot be recovered once it has decayed. It has a short lifetime, on the order of minutes, and gets used up by each RF excitation. In this paper, we present a new dynamic chemical-shift imaging method that uses specialized ...

متن کامل

Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies.

Hyperpolarized 13C MR spectroscopic imaging can detect not only the uptake of the pre-polarized molecule but also its metabolic products in vivo, thus providing a powerful new method to study cellular metabolism. Imaging the dynamic perfusion and conversion of these metabolites provides additional tissue information but requires methods for efficient hyperpolarization usage and rapid acquisitio...

متن کامل

Single shot three‐dimensional pulse sequence for hyperpolarized 13C MRI

PURPOSE Metabolic imaging with hyperpolarized 13 C-labeled cell substrates is a promising technique for imaging tissue metabolism in vivo. However, the transient nature of the hyperpolarization, and its depletion following excitation, limits the imaging time and the number of excitation pulses that can be used. We describe here a single-shot three-dimensional (3D) imaging sequence and demonstra...

متن کامل

Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3T-initial experience.

The transgenic adenocarcinoma of mouse prostate (TRAMP) mouse is a well-studied murine model of prostate cancer with histopathology and disease progression that mimic the human disease. To investigate differences in cellular bioenergetics between normal prostate epithelial cells and prostate tumor cells, in vivo MR spectroscopic (MRS) studies with non-proton nuclei, such as (13)C, in the TRAMP ...

متن کامل

Dynamic 1H imaging of hyperpolarized [1‐13C]lactate in vivo using a reverse INEPT experiment

PURPOSE Dynamic magnetic resonance spectroscopic imaging of hyperpolarized 13 C-labeled cell substrates has enabled the investigation of tissue metabolism in vivo. Currently observation of these hyperpolarized substrates is limited mainly to 13 C detection. We describe here an imaging pulse sequence that enables proton observation by using polarization transfer from the hyperpolarized 13 C nucl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 193 1  شماره 

صفحات  -

تاریخ انتشار 2008